2002 Vol. 4, No. 21 3569-3570

Carbohydrate-Based Synthesis of Naturally Occurring Marine Metabolites Slagenins B and C

Mukund K. Gurjar* and Smritilekha Bera

National Chemical Laboratory, Pune- 411008, India gurjar@dalton.ncl.res.in

Received June 10, 2002

ABSTRACT

The first enantioselective syntheses of slagenins B and C, marine metabolites from *Agelas nakamurai*, starting from L-arabinose have been described.

The secondary marine metabolites slagenins A (1), B (2), and C (3) were isolated from the sponge Agelas nakamurai.¹ These natural products possess cytotoxicity against murine leukemia L1210 cells in vitro with IC₅₀ values of 7.5 and 7.0 μ g/mL. They are characterized by the presence of a tetrahydrofuro[2,3-d]imidazolidin-2-one moiety. Two groups have reported synthesis of these metabolites. The first synthesis described by Horne and co-workers² involved racemic preparations of slagenins, while a report from Jiang et al.³ revealed synthesis of the antipodes of slagenins B and C. The latter group, on the basis of NMR studies and optical rotation values, suggested the absolute stereochemistries as (9R,11R,15R) for slagenin B (2) and (9R,-11S,15S) for slagenin C (3). We report in this letter the first enantioselective total synthesis of naturally occurring slagenins B and C starting from L-arabinose as a chiral precursor.

The known⁴ 5-*O-tert*-butyldiphenylsilyl-1,2-*O*-isopropylidene- β -L-arabinofuranose (**4**) was subjected to Barton's deoxygenation reaction⁵ in which **4** was first converted into the xanthate derivative (**5**) and then treated with tri *n*-butyltin hydride in refluxing toluene to give the 3-deoxy derivative (**6**). In the ¹H NMR spectrum of **6**, the characteristic signals due to H-3 and H-3' were located at 1.97 and 2.11 ppm.

⁽¹⁾ Tusda, M.; Uemoto, H.; Kobayashi, J. *Tetrahedron Lett.* **1999**, *40*, 8700

⁽²⁾ Sosa, A. C. B.; Yakushijin, K.; Horne, D. A. *Org. Lett.* **2000**, 2, 3443.

⁽³⁾ Jiang, B.; Liu, J. F.; Zhao, S. Y. Org. Lett. 2001, 3, 40.

⁽⁴⁾ Dahlman, O.; Garegg, P. J.; Meyer, H.; Schramek, S. Acta Chem. Scand, Ser. B. 1986, 40, 15.

⁽⁵⁾ Barton, D. H. R.; McCombie, S. W. J. Chem. Soc., Perkin Trans. 1 1975, 1574.

Transformation of **6** into the azido derivative 9^6 involved removal of the silyl group, O-tosylation, and nucleophilic displacement with NaN₃ in DMF (Scheme 1).

Scheme 1
a

HO OH $_{OR}$ $_{OR}$ $_{OM}$ $_{OM}$

^a Reagents and conditions: (a) ref 4; (b) NaH, CS₂, MeI, THF, rt, 2 h (98%); (c) Bu₃SnH, toluene AIBN, reflux, 5 h, (84%); (d) 1 M Bu₄NF, THF rt, 4 h, (81%); (e) *p*-Ts-Cl, Et₃N, CH₂Cl₂, rt, (92%); (f) NaN₃, DMF, 85 °C, 12 h, (85%).

Our next goal was to introduce an imidazolidine ring system across the C_1-C_2 segment of **9**. For this endeavor, the isopropylidene group was cleaved under acidic conditions and the resulting diol was selectively silylated with TBSClimidazole to give **10**. Swern oxidation⁷ of **10** provided the 2-ulose derivative (**11**) whose ¹H NMR spectrum showed a downfield shift of protons located at C-1 and C-3 (Scheme 2).

Scheme
$$2^a$$

9

 N_3
OH
OH
 N_3
OH

^a Reagents and conditions: (a) TBSCl, imidazole, Et₃N, CH₂Cl₂, 45 min (72%); (b) (COCl)₂, DMSO, Et₃N, 2 h (72%).

Treatment⁸ of **11** with urea in the presence of 40% aqueous HF in methanol at room temperature gave a mixture of

(7) Omura, K.; Swern, D. Tetrahedron 1978, 34, 1651.

diastereomers (12 and 13). Separation of this diastereomeric mixture at this juncture was difficult. Therefore, the mixture as such was subjected to catalytic reduction over Pd/C followed by reaction with 4-bromo-2-(trichloroacetyl)pyrrole in DMF at room temperature, which gave a mixture of 2 and 3 (Scheme 3).

^a Reagents and conditions: (a) urea, 40% aq HF, MeOH, rt (62%); (b) 10% Pd−C, H₂, MeOH, 1 atm, 2 h (100%); 4-bromo-2-trichloroacetyl-pyrrole, DMF, rt, 16 h, (83%); (c) chromatography.

Silica gel chromatography conveniently provided slagenin B (2) and C (3) as pure products. Slagenins B and C were fully characterized by 1 H and 13 C NMR spectroscopic data, 9 which were found to be identical to reported values. 1 The observed optical rotation of synthetic slagenin B (2) was $[\alpha]_D$ + 36 (c 0.2, MeOH) [lit. 1 $[\alpha]_D$ + 33 (c 0.2, MeOH)], and that of slagenin C (3) was $[\alpha]_D$ –39 (c 0.2, MeOH) [lit. 1 $[\alpha]_D$ –35 (c 0.2, MeOH)]. In summary, a carbohydrate-based synthesis of naturally occurring slagenins B and C have been reported starting from L-arabinose.

Acknowledgment. S.B. thanks CSIR (New Delhi) for financial assistance in the form of a Senior Research Fellowship.

Supporting Information Available: ¹H NMR and ¹³C NMR spectra for **10**, **11**, **2**, and **3**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL020112Q

(9) NMR data. Slagenin B (2): $^1\mathrm{H}$ NMR (CDCl_3, 500 MHz) δ 1.76 (t, 1 H, J=11.9 Hz), 2.17 (dd, 1 H, J=3.9,11.9 Hz), 3.15 (s, 3 H), 3.48 (m, 2 H), 4.04 (m, 2 H), 5.19 (s, 1 H), 6.86 (d, 1 H, J=1.6 Hz), 6.96 (d, 1 H, J=1.6 Hz), 7.50 (s, 1 H), 8.42 (t, 1 H, J=5.7 Hz); $^{13}\mathrm{C}$ NMR (CDCl_3, 125 MHz) δ 41.5, 41.6, 50.3, 76.1, 88.5, 94.8, 97.9, 112.0, 121.3, 126.8, 155.5, 159.8. Slagenin C (3): $^1\mathrm{H}$ NMR (CDCl_3, 200 MHz) δ 1.90 (dd, 1 H, J=6.4, 12.8 Hz), 2.29 (dd, 1 H, J=6.7, 12.8 Hz), 3.17 (s, 3 H), 3.40 (m, 2 H), 4.19 (m, 1 H), 5.12 (s, 1 H), 6.87 (s, 1 H), 6.97 (s, 1 H) 7.65 (s, 1 H), 7.69 (s, 1 H), 8.24 (t, 1 H, J=5.1 Hz), 11.87 (s, 1 H); $^{13}\mathrm{C}$ NMR (CDCl_3, 50 MHz) 40.8, 42.9, 49.8, 76.2, 89.5, 95, 97.3, 111.8, 121.2, 126.8, 159.4, 159.7.

3570 Org. Lett., Vol. 4, No. 21, 2002

⁽⁶⁾ Selected spectroscopic values for 9: 1 H NMR (CDCl₃, 200 MHz): δ 1.26 (s, 3 H), 1.50 (s, 3 H), 1.97 (dd, 1 H, J = 2.9, 15.1 Hz), 2.11 (ddd, 1 H, J = 5.7, 7.5, 15.1 Hz), 3.16 (dd, 1 H, J = 6.8, 12.4 Hz), 3.61 (dd, 1 H, J = 7.5, 12.4 Hz), 4.23 (m, 1 H), 4.67 (m, 1 H), 5.61 (d, 1 H, J = 4.2 Hz). 13 C NMR (CDCl₃, 50 MHz): δ 25.8, 27.0, 34.4, 54.72, 79.6, 80.5, 106.7, 112.3. Ms: 184 (M⁺ – 15); IR: 2100 cm⁻¹ (N₃). Anal. Calcd for CsH₁3N₂O₃: C. 48.24; H. 6.53. Found: C. 47.9; H. 6.56.

^{(8) (}a) Grillon, E.; Gallo, R.; Pierrot, M.; Boileau, J.; Wimmer, E. Tetrahedron Lett. 1998, 29, 1015. (b) Gautam, S.; Katcham, R.; Nematullahi, J. Synthetic Comm. 1979, 9, 863.